Интеграл Типовые задачи

Теорема необходимое условие существования определенного интеграла

Некоторые свойства интеграла ФНП

Геометрические свойства интеграла ФНП Возможное геометрическое представление интегральной суммы  функции  на , а затем и интеграла  определяют геометрические свойства интеграла и перечень некоторых возможных задач, решаемых с помощью интеграла.

Площадь части криволинейной поверхности  считается с помощью поверхностного интеграла

Некоторые механические приложения интеграла ФНП Масса фигуры (отрезка, дуги, плоской фигуры, части криволинейной поверхности, тела)

Вычисление интеграла  рассмотрим подробно в зависимости от  и .

Для подынтегральной функции  определенный интеграл с переменным верхним пределом определяет
первообразную на .

Типовые задачи Вычисление  проводится по формуле Ньютона – Лейбница, если известна какая-либо первообразная подынтегральной функции. Если для вычисления первообразной применяется "интегрирование по частям", то эту операцию можно проводить сразу и для определенного интеграла: .

Вычислить интеграл .

Вычисление площади плоской фигуры Площадь фигуры в декартовых координатах Вычислить площадь фигуры, ограниченной линиями  и .

Площадь плоской фигуры в полярных координатах

Вычисление объема тела

Вычислить объем цилиндрического тела, расположенного между плоскостями   и  и ограниченного поверхностью  и плоскостью .

Механические приложения Пластина имеет форму прямоугольника со сторонами длиной   и . Найти массу этой пластины, если ее плотность распределения массы в произвольной точке равна квадрату расстояния от точки до одной из вершин пластины.

Вычисление площади криволинейной поверхности ПРИМЕР. Вычислить площадь частей сферы , лежащих внутри цилиндра .

Вычислить интеграл , где  – призма, ограниченная координатными плоскостями , ,  и плоскостью .

Вычислить интеграл , где   – шаровое кольцо .

Вычислить объем тела, ограниченного эллипсоидом .

Вычисление криволинейных интегралов I рода Вычислить интеграл , если  , , .

Длина дуги в декартовых координатах Вычислить длину одного витка винтовой линии , , .

Механические приложения Вычислить массу дуги   

Вычислить момент инерции относительно плоскости  дуги  , если плотность распределения массы в каждой точке дуги пропорциональна произведению

Вычислить повторный интеграл , восстановив область .

Вычислить повторный интеграл .

 

Линейным дифференциальным уравнением (ЛДУ) называется уравнение вида,

Решить ДУ .

Пространство  имеет размерность , его "базис" состоит из  линейно независимых элементов из .

Теорема о необходимом условии линейной зависимости произвольной системы функций

Поскольку понятия линейной зависимости и независимости системы решений ОЛДУ   отрицают друг друга, то теперь можно сформулировать критерий линейной независимости системы решений ,  ОЛДУ.

Найти ФСР ОЛДУ  . Записать общее решение. По НУ:   выделить частное решение.

Итак, для нахождения общего решения НЛДУ нужно

Решить 

СДУ имеет нормальную форму записи, если удается записать ее уравнения в виде, разрешенном относительно первых производных неизвестных функций

Геометрическая интерпритация СДУ в нормальной форме и ее решений

Пространство переменных  СДУ в нормальной форме называется фазовым пространством системы. Его структура может быть различной

 Задача КОШИ для СДУ в нормальной форме При рассмотрении прикладной задачи, требующей решения СДУ, как правило, интересует единственное решение. Поэтому нужно уметь выделять из бесконечного множества решений СДУ требуемое решение.

Является ли двухпараметрическое семейство функций ,  общим решением СДУ

 Сведение СДУ к одному ДУ

Свести СДУ  к одному ДУ. Решить ДУ. Записать СДУ и решение СДУ в векторной и векторно-матричной формах.

Метод интегрируемых комбинаций  – СДУ второго порядка сводится к ДУ , откуда   и из первого уравнения , т.е.  – общее решение СДУ.

СДУ в нормальной форме  может быть представлена в виде , симметричном относительно переменных. Так, например, симметричная форма записи СДУ

Достаточные условия существования единственного решения задачи Коши для СДУ вида

Свойства решений СОЛДУ

Рассмотрим вектор-функции  и . При каждом   и  линейно зависимы, но ни одна из этих вектор-функций не получается из другой умножением на число, т.е. на  эти функции линейно независимые.

Теорема о структуре общего решения СОЛДУ

Некоторые свойства матриц ФСР СОЛДУ

Общее решение СОЛДУ  запишется , где  – произвольный вектор, . При этом задача Коши  имеет единственное решение , поскольку из соотношения  имеем .

Пример Решить СДУ 

Метод Эйлера

Решить СОЛДУ .

Решить СОЛДУ .

Экологические проблемы эксплуатации АЭС Решение дифференциального уравнения