Контрольная работа по теме интегралы

Ряды

Задача. Исследовать на сходимость ряды:

1)   2) 

Решение.

1. Рассмотрим ряд  .

Он знакочередующийся. К таким рядам применим признак Лейбница. Знакочередующийся ряд

  сходится при условии:

 1)

 2) .

Так как   и , условия признака Лейбница выполняются, значит, ряд сходится. Если знакопеременный ряд сходится, то эта сходимость называется абсолютной или условной в зависимости от того, сходится или расходится соответствующий ряд из абсолютных величин членов знакопеременного ряда. Составим ряд из абсолютных величин

.

Получили положительный ряд. Применяем к нему достаточный признак сходимости – признак Даламбера: если  то положительный ряд  сходится при  и расходится, когда

Поскольку

,

ряд  сходится, следовательно, ряд  сходится абсолютно.

2. Рассмотрим ряд  .

Условия признака Лейбница выполняются:

1)  2)   Значит, ряд сходится. Исследуя ряд на абсолютную сходимость, составим ряд из абсолютных величин  Применяем интегральный признак сходимости Маклорена-Коши: положительный ряд  сходится или расходится в зависимости от того, сходится или расходится  (здесь   при  - непрерывная, положительная и монотонно убывающая функция, такая что ).

Вычисляем

Это означает, что несобственный интеграл расходится, тогда расходится ряд , а исходный ряд  сходится условно.

Отметим, что при исследовании сходимости ряда

можно было использовать предельный признак сходимости (см. задачу 21).


Решение типового варианта контрольной работы