Множества пределы производная и интеграл

Элементы теории множеств Понятие "множество" – неопределяемое понятие. Под множеством понимается "набор", "коллекция", "совокупность" и т.п. отличающихся друг от друга объектов, объединенных каким-либо общим свойством. Предметы или объекты, составляющие множество, называются элементами множества.

Операции над множествами названиями похожи на арифметические операции, но существенно другие.

Доказать, что . РЕШЕНИЕ. Два множества совпадают, если каждое из них является подмножеством другого.

Множество всех четных чисел  эквивалентно множеству . В самом деле, отображение (правило)  устанавливает взаимно-однозначное соответствие между множествами  и .

Не всякое бесконечное множество является счетным

Некоторые понятия и операции математической логики

Если  – истинное высказывание, то высказывание не  построится так:  или , т.е.  – ложное.

Для описания области истинности предиката используют кванторы

Всякая теорема в математике состоит из разъяснительной части (описания тех объектов, о которых идет речь в теореме) и связанных между собой высказываний. Под теоремой понимают всегда истинное высказывание. Теоремы часто формулируют в виде импликаций вида .

Обратная противоположная теорема

Свойтва числовых множеств

Предел и непрерывность функции одной переменной Понятие предела функции  при , стремящемся к  (сокр. ), является основным понятием математического анализа. Оно характеризует поведение функции  вблизи точки , т.е. существование предела и его значение определяют локальное свойство

.В определении предела начение функции в точкез   не участвует, поэтому функция   в точке  может быть не определена (не задана).

Для удобства изучения и геометрического представления последовательности обычно переобозначают   и последовательность   изображают точками на числовой оси.

Числовая последовательность – множество значений функции, определенной на множестве всех натуральных чисел, записанное в порядке возрастания , т.е. .

Показать по определению . .

Показать .

Показать, что  не существует.

Теорема о локальной ограниченности функции, имеющей при   конечный предел

Теорема о переходе к пределу в равенстве Контрпример. Пусть , , тогда .

Но сумма функций может быть представлена слагаемыми (неоднозначно), например в виде  и , и пределы слагаемых при  не являются конечными числами (не существуют).

Первый замечательный предел .

Сравниваем две б\м при  функции и устанавливаем их эквивалентность .

Односторонние пределы

Второй замечательный предел .

Непрерывность функции в точке

Непрерывная в точке функция локально ограничена. Арифметические операции: сложение, разность и произведение конечного множества непрерывных в одной и той же точке функций – определяют функцию, непрерывную в той же точке. Деление непрерывных функций определяет непрерывную функцию в любой точке, кроме нулей знаменателя.

Непрерывность функции на множестве Функция , , называется непрерывной на множестве , или говорят, что функция  принадлежит множеству всех функций, непрерывных на множестве  (сокр. ), если она непрерывна в каждой точке множества .

Теорема Вейерштрасса

Производная функции в точке

Показать по определению дифференцируемость функции  в произвольной точке

Правила дифференцирования.

Производная обратной функции Понятие ОБРАТИМОСТИ функции относится к свойствам функции на множестве (глобальное свойство). Будем рассматривать функцию , ; здесь  – область задания функции:  – множество значений функции.

Формулы производных конкретных функций

Вычислить производную функции  на ОДЗ. РЕШЕНИЕ. Можно дифференцировать последовательно: сначала логарифмированную функцию, затем по формулам производной дроби и произведения. На проще сначала выражение прологарифмировать, а затем уже дифференцировать.

Теорема Ферма

Теорема Лагранжа

Правило Лопиталя не является универсальным, оно применимо лишь тогда, когда существует предел отношения производных .

Разложить функцию  в окрестности точки , взяв . РЕШЕНИЕ. Воспользуемся формулой Маклорена при .

Исследование функции и построение ее графика

ТЕОРЕМА (достаточное условие существования точки локального экстремума функции)

Неопределенный интеграл

Свойства неопределенного интеграла базируются на свойствах дифференциала функции

Вычислить интеграл .

Сведение исходного интеграла к табличному тесно связано с операцией подведения функции под знак дифференциала: . Функция  – какая-то первообразная для  и ее подбирают, используя формулы дифференцирования и правила дифференцирования.

Вычислить . РЕШЕНИЕ. Снова выбор табличного интеграла, к которому попытаемся свести интеграл , проведем по структуре подынтегрального выражения. Оно представляет собой дробь, знаменатель которой содержит квадратный корень разности положительного числа  и квадрата функции – .

Интегрирование тригонометрических функций вида

Вычислить .

Эффективность метода интегрирования по частям определяется умением правильно определить, для каких интегралов применима формула (*) и как наиболее рационально расчленить подынтегральное выражение  на произведение , т.е. как выбрать функции  и , чтобы идея интегрирования по частям была осуществлена. Приведем некоторые рекомендации такого выбора.

Вычислить , .

Вычислить , применяя интегрирование по частям,  – число, .

Метод замены переменной (интегрирование подстановкой)

Иногда по структуре подынтегрального выражения удается догадаться не о самой подстановке , а о виде функции  – обратной для  – с тем, чтобы свести исходный интеграл к одному из табличных интегралов.

Дробно-рациональная функция (рациональная дробь) определяется формулой ,

Способы отыскания введенных здесь и пока неизвестных коэффициентов, объединенные названием "Метод неопределенных коэффициентов", покажем на конкретных примерах. ПРИМЕР 1. Разложить на простейшие дроби рациональную дробь .

Вычислить .

Интегрирование с помощью рационализации подынтегральных выражений

Вычислить .

Интеграл от функции , где , ,  и  – постоянные,   – целое положительное число, рационализируется подстановкой .

Реакторы на быстрых нейтронах http://school70.ru/ Решение дифференциального уравнения