Вычисление площади поверхности Механические приложения двойного интеграла

Контрольная по математике примеры решений

Аналитическая геометрия

Пример. Привести уравнение кривой второго порядка  к каноническому виду и построить кривую.

Решение.

Для приведения уравнения кривой второго порядка к каноническому виду применяют метод выделения полного квадрата.

Сгруппируем слагаемые, содержащие текущие координаты. Коэффициенты при  и  вынесем за скобки:

Пример. Используя теорию квадратичных форм, привести к каноническому виду уравнение линии второго порядка. Схематично изобразить график.

Выделим полный квадрат: . Отсюда . Разделим обе части равенства на 25: . Запишем полученное уравнение в каноническом виде: .

Выполним параллельный перенос осей координат по формулам . При таком преобразовании начало координат переносится в точку , уравнение эллипса принимает канонический вид .

В нашем примере , , , .

Итак, рассматриваемое уравнение определяет эллипс с центром в точке   и полуосями  и .

Рис. 13

Поэтому сходимость или расходимость конкретного ряда является основным вопросом для исследования. Если ряд сходится, то предел общего члена равен 0 (необходимое условие сходимости ряда). Обратное, вообще говоря, неверно. Члены ряда могут стремиться к нулю, но ряд при этом может расходиться. Необходимый признак в достаточной форме: если предел не равен 0, то ряд расходится.
Однофазный асинхронный двигатель http://rustud.ru/ Производная и дифференциал