Тренажер Лунный степпер

Тренажер Лунный степпер

Гуманитарные науки

Гуманитарные науки

Биржа студенческих   работ. Контрольные, курсовые, рефераты.

Биржа студенческих
работ. Контрольные, курсовые, рефераты.

Студенческий файлообменник

Студенческий файлообменник

Выполнение 
работ на заказ. Контрольные, курсовые и дипломные работы

Выполнение работ на заказ. Контрольные, курсовые и дипломные работы

Занимайтесь онлайн 
        с опытными репетиторами

Занимайтесь онлайн
с опытными репетиторами

Приглашаем к сотрудничеству преподователей

Приглашаем к сотрудничеству преподователей

Готовые шпаргалки, шпоры

Готовые шпаргалки, шпоры

Отчет по практике

Отчет по практике

Приглашаем авторов для работы

Авторам заработок

Решение задач по математике

Закажите реферат

Закажите реферат

Вычисление площади поверхности Механические приложения двойного интеграла

Контрольная по математике примеры решений

Аналитическая геометрия

Задача

Кривая задана в полярной системе координат уравнением .

Требуется:

найти точки, лежащие на кривой, давая  значения через промежуток, равный , начиная от  до ;

построить полученные точки;

построить кривую, соединив построенные точки (от руки или с помощью лекала);

составить уравнение этой кривой в прямоугольной декартовой системе координат.

Решение.

Сначала построим таблицу значений  и :

0

2,00

1,92

1,71

1,38

1,00

0,62

0,29

0,08

0,00

0,08

0,29

0,62

1,00

1,38

1,71

1,92

Построим эти точки в полярной системе координат. Полярная система координат состоит из начала координат  (полюса) и полярной оси . Координаты точки  в полярной системе координат определяются расстоянием  от полюса (полярным радиусом) и углом  между направлением полярной оси и полярным радиусом (полярным углом). Для того, чтобы построить точку , необходимо построить луч, выходящий из точки  под углом  к полярной оси; отложить на этом луче отрезок длиной . [an error occurred while processing this directive]

Рис. 15

Построим все точки, определенные в таблице и соединим их плавной линией

Рис. 16

Запишем уравнение рассматриваемой кривой в прямоугольной декартовой системе координат. Для этого воспользуемся формулами перехода от декартовой к полярной системе координат.

Если полюс совпадает с началом координат прямоугольной декартовой системы координат, полярная ось – с осью абсцисс, то между прямоугольными декартовыми координатами  и полярными координатами  существует следующая связь:

,  

Откуда

 

Рис. 17

Итак, в уравнении исходной кривой , . Поэтому уравнение  принимает вид . После преобразований получим уравнение .

Поэтому сходимость или расходимость конкретного ряда является основным вопросом для исследования. Если ряд сходится, то предел общего члена равен 0 (необходимое условие сходимости ряда). Обратное, вообще говоря, неверно. Члены ряда могут стремиться к нулю, но ряд при этом может расходиться. Необходимый признак в достаточной форме: если предел не равен 0, то ряд расходится.
Производная и дифференциал