Вычисление площади поверхности Механические приложения двойного интеграла

Курсовая по математике примеры решений

Исследование функций.

Пример.

Найти наибольшее и наименьшее значение функции  на отрезке

Решение. Функция достигает наибольшего и наименьшего значения либо в критических точках, принадлежащих заданному отрезку, либо на концах этого отрезка. Найдем критические точки (т.е. точки в которых производная равна нулю или не существует): Задания по теме "Нелинейное программирование"

  при  и 

Найдем значение функции в этих точках и на концах отрезка

Выберем из предложенных значений наибольшее и наименьшее.

Итак, наибольшее значение функции на заданном отрезке равно 2 и достигается при , , а наименьшее значение равно -18 при ,

Предел числовой последовательности и его свойства. Арифметические действия с пределами.Совокупность значений функции an=f(n) натурального аргумента n наз-ся числовой последовательностью и обозначается а1,а2,..аn или кратко аn Арифметические действия: Если последовательности { аn } и { bn } имеют предел, то имеют предел следующие последовательности:{ аn + bn },{ аn - bn },{ аn * bn },
Производная и дифференциал