Вычисление площади поверхности Механические приложения двойного интеграла

Контрольная по математике примеры решений

Кратные и криволинейные интегралы. Элементы теории поля.

Задача Записать двойной интеграл в виде повторного и изменить порядок интегрирования, если область интегрирования  .

Решение. Область интегрирования D является правильной (простой) в направлении оси ОУ, т.к. любая прямая, параллельная оси ОУ, пересекает границу области D не более чем двух точках. Первую точку пересечения с линией у=х2 назовем точкой входа, а линию - линией входа, ее уравнение у=х2. Вторую точку пересечения с линией у=2-х назовем точкой выхода, а линию – линией выхода. Тогда повторный интеграл в правой части составлен из двух определенных: первый берется по переменному у, оси которого ОУ параллельны секущие прямые, он называется внутренним. Пределы интегрирования в нем зависят от х и совпадают с ординатами точек пересечения секущих с линией входа (нижний предел) и линией выхода (верхний предел интегрирования). При внутреннем интегрировании переменное х считается постоянным, поэтому его результатом является функция, которая после подстановки пределов интегрирования зависит от х. Второй интеграл по х берется от этой функции по переменному х, а пределы интегрирования в нем равны наименьшему (для нижнего) и наибольшему (для верхнего) значению проекций точек области D на ось ОХ:

 

 При изменении порядка интегрирования линия входа в область D имеет уравнение  х=0, а линия выхода разбивается на две части, одна из которых имеет уравнение  , а вторая – уравнение . По свойству аддитивности двойного интеграла он разбивается на два, в каждом их которых сделана замена на повторный с внутренним интегрированием по переменному х, а внешним интегрированием по переменному у:

 

 

Числовой ряд. Рассмотрим произвольную числовую последовательность и формально составим сумму ее членов  Это выражение называют числовым рядом, или просто рядом. Члены последовательности  называют членами ряда. Конечно, невозможно вычислить сумму бесконечного числа слагаемых, но легко вычислить сумму первых n членов ряда . Эта сумма называется n-ой частичной суммой.
Производная и дифференциал