Вычисление площади поверхности Механические приложения двойного интеграла

Курсовая по математике примеры решений

Кратные и криволинейные интегралы. Элементы теории поля.

Задача. а) Найти координаты центра тяжести плоской однородной пластины D, ограниченной линиями  

Решение. Считаем плотность однородной пластины  Тогда ее статические моменты относительно осей ОХ и ОУ определяются формулами: , а координаты ее центра тяжести  определяются формулами: , где  - масса однородной пластины D с плотностью   Применяя эти формулы, получаем:

,

 Тогда .

б) Доказать, что работа силы  зависит только от начального и конечного положения точки ее приложения и не зависит от формы пути. Вычислить работу при перемещении точки приложения силы из  в

Решение. Проверяем условие, достаточное для того, чтобы работа силы  по перемещению точки по дуге  не зависела от формы пути:

 ,

 , то есть .

При этом функции  непрерывны в любой односвязной области D, содержащей

Тогда, для вычисления работы А = находим криволинейный интеграл 2-го рода

  В силу независимости этого интеграла от пути интегрирования вычислим его вдоль ломаной  где точка :

Тогда

При вычислении криволинейного интеграла 2-го рода по  меняется от 0 до 1,  а при вычислении аналогичного интеграла по  а  меняется от 0 до 1.

Сходимость числового ряда. Ряд называют сходящимся, если существует и конечен предел последовательностичастичных сумм ряда. Сам предел при этом называют суммой ряда и обозначают . Если предел частичных сумм не существует или бесконечен, то ряд расходится.
Производная и дифференциал